LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FIFTH SEMESTER - NOVEMBER 2013

MT 5506/MT 4501 - MECHANICS - I

Date.	OI/II	/2013
Time:	9:00 -	12:00

Dept. No.

Max.: 100 Marks

PART - A

Answer ALL the questions. Each question carries equal marks:

 $(10 \times 2 = 20 \text{ marks})$

- 1. What is the resolved part of a force \vec{F} .
 - (i) along the direction of the force?
 - (ii) Perpendicular to the direction of the force?
- 2. State converse of the triangle law of forces.
- 3. Define moment of a force.
- 4. Define a couple.
- 5. State Newton's third law of motion.
- 6. Define the angle of friction and cone of friction.
- 7. State the principle of conservation of momentum.
- 8. Define coefficient of restitution.
- 9. Define (i) trajectory (ii) horizontal range in the context of a projectile.
- 10. Define limiting velocity.

PART - B

Answer any FIVE questions. Each question carries equal marks:

 $(5 \times 8 = 40 \text{ marks})$

- 11. State and prove Lam's theorem.
- 12. A uniform plane lamina in the form of a rhombus, one of whose angle is 120° is supported by two forces of magnitudes P and Q applied at the centre in the direction of the diagonals so that one side is horizontal. Show that if P>Q, $P^2=ZQ^2$.
- 13. State and prove Varignon's theorem on moments.
- 14. Equal weights P and P are attached to two strings A C P and B C P passing over a smooth peg C. AB is a heavy beam of weight W whose centre of gravity is 'a' feet from A and 'b' feet from B. Show that AB is inclined to the horizon at the angle $\tan^{-1} \left\{ \frac{a-b}{a+b} \tan \left(\sin^{-1} \frac{W}{2P} \right) \right\}$.
- 15. A heavy rod ACDB where AC = a and DB = b rests horizontally upon two smooth pegs C and D. If a load P is applied at A, it will just distribute the equilibrium. If CD = c, prove that the weight of the rod is $\frac{Pa + ab}{c}$.

- 16. Find the resultant of two like and unlike parallel forces.
- 17. A particle projected upwards under the action of gravity in a resisting medium where the resistance varies as the square of the velocity. Discuss the motion.
- 18. A particle is projected from a point in a smooth fixed horizontal plane with a velocity μ at an elevation α . Show that the particle ceases to rebound from the plane at the end of time $\left(2u\sin\alpha/g(1-e)\right)$ and that the total horizontal distance described in this period is $\left\{u^2\sin2\alpha/g(1-e)\right\}$.

PART - C

Answer any TWO questions. Each question carries equal marks:

 $(2 \times 20 = 40 \text{ marks})$

- 19. a) The angle between two forces of magnitudes P + Q and P Q is 2α and the resultant of forces makes and angle θ with the lisutor of the angle between the forces. Show that the $P \tan \theta = Q \tan \alpha$.
 - b) O is the circum centre of the Δ ABC. Forces of magnitudes P, Q and R acting respectively along \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} are in equilibrium. Prove that

$$\frac{P}{a^2(b^2+c^2-a^2)} = \frac{Q}{b^2(c^2+a^2-b^2)} = \frac{R}{c^2(a^2+b^2-c^2)}.$$
 (10+10)

- 20. a) Find the resultant of two like parallel forces P and Q and determine the position of the point of application.
 - b) A ladder which stands on a horizontal ground leaning against a vertical wall is so loaded that its centre of gravity is at the distance a and b lower and upper ends respectively. Show that if the ladder is in limiting equilibrium, its inclination θ to the horizontal is given by $\tan \theta = \frac{a b \mu \mu^1}{(a + b)\mu}, \mu, \mu^1 \text{ being the coefficient of friction between the ladder and the ground wall respectively.} \tag{12+8}$
- 21. a) Derive the equation of the path of a projectile in Cartesian form.
 - b) A particle is projected in a vertical plane at an angle α to the horizontal from the foot of a plane whose inclination to the horizon in 45°. Show that the particle will strike the plane at right angles if $\tan \alpha = 3$. (10 + 10)
- 22. Two smooth spheres of masses m_1 and m_2 moving with velocities u_1 and u_2 impinge directly. Obtain (i) the motion after impact.
 - (ii) the impulse imparted to each sphere due to impact.
 - (iii) the change in K. E. due to impact. (20)

\$\$\$\$\$\$\$